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Abstract
In this article we want to present the basic ideas of (microscopic) diffusion
studies. It is the aim of such investigations to reveal the basic jump processes,
i.e., to find the elementary jump vectors and jump frequencies. In this paper
we first present a historic introduction, explaining the fundamental ideas of
diffusion by presenting the work of Fick and Einstein. Then we introduce
the basics of scattering theory (Van Hove), that are later on used to obtain an
expression for the scattering function of a system of diffusing particles (Chudley
and Elliott, Singwi and Sjölander). Until the mid-1990s this scattering function
was measured as a function of wavevector transfer and energy. But the rise of
synchrotron sources with their pulsed radiation and the parallel development of
detectors and monochromators finally provided the possibility of studying the
intermediate scattering function directly, i.e., measuring the scattered intensity
as a function of wavevector transfer and time. We present this relatively new
method of nuclear resonant scattering of synchrotron radiation in the forward
direction together with two examples: the diffusion of iron in the intermetallic
alloys Fe3Si and FeAl.

1. Introduction—some historical facts

Diffusion, i.e., the effort of nature to equalize concentration gradients, is a widely studied field.
Approximately 200 years ago Jean Baptiste Fourier (1768–1830) and Adolf Fick (1829–1901)
found the fundamental equation for particle diffusion. The driving force for particle wandering,
i.e., diffusion, is assumed to be a concentration gradient. The simplest way of combining these
facts is the following linear ansatz1

j = −D ∇c(x, t) (Fick’s first law). (1)

j denotes the particle flux (i.e., number of particles per area and time), c the concentration
of particles (i.e., number of particles per volume) which is a function of space and time, and
D is the so-called diffusion coefficient. It is measured in m2 s−1. Fick’s first law applies

1 Here and elsewhere in the article, vectors are denoted by bold type.
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to all non-ballistic viscous flow of particles in a gradient field, such as thermal conductance,
electrical conductance (Ohm’s law), and viscous flow of fluids.

If particle conservation is demanded, one obtains another equation—a so-called ‘contin-
uity equation’—that further restricts Fick’s first law. Since there are no sources and drains
for particles, the flux of particles through the boundary S of a volume V must result in an
equivalent change in the number of particles in that volume, i.e.,

∂

∂t

∫
V

c(x, t) dV = −
∫
S

j · dS
Stokes= −

∫
V

∇ · j dV. (2)

One obtains
∂

∂t
c(x, t) + ∇ · j = 0 (continuity equation). (3)

Substituting this last equation into Fick’s first law (1), one obtains Fick’s second law, the
well known ‘diffusion equation’:

∂

∂t
c(x, t) = D�c(x, t) (Fick’s second law). (4)

This equation is solved by

c(x, t) = (4πDt)−3/2 exp

(
− x2

4Dt

)
(5)

with the initial condition2 c(x, t = 0) = δ(x). In figure 1, c(x, t) is plotted for several times
t . One can recognize that the concentration profile smears out with time—in the limit of very
long timescales being completely flat with zero concentration gradient.
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Figure 1. The concentration profile at different times, demonstrating the broadening of the curve.

Fourier’s and Fick’s ideas were completely rooted in the concept of ‘continuous matter’.
The idea of atoms forming our world in physics had its breakthrough at the end of the 19th

2 The solution for arbitrary initial condition c(x, t = 0) = f (x) is given by

c(x, t) = f (x) ∗
[
(4πDt)−3/2 exp

(
− x2

4Dt

)]

where ‘∗’ denotes the convolution of two functions.
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century essentially because of the Viennese physicist Ludwig Boltzmann (1844–1906), who
developed a statistical theory of heat to explain the fundamental laws of thermodynamics. In the
year 1905 Albert Einstein (1879–1955) used Boltzmann’s ideas to develop a molecular kinetic
concept of Brownian motion that could be observed in suspended particles in a liquid [4].
In the atomistic view, this motion should be the result of many stochastic collisions between
the molecules of the liquid and the suspended particle. In the first part of his work, Einstein
calculated the diffusion coefficient of the suspended particles just in terms of particle radius r ,
viscosity of the liquid η, and temperature T :

D = RT (6πNηr)−1 (6)

where R stands for the universal gas constant and N for Avogadro’s number.
In the second part of the work Einstein connects the motion of the particles in the liquid

with diffusion. It is informative to follow Einstein’s argumentation (in one dimension). It is
assumed that the motion of one particle at the time t is independent of the motion of all other
particles and of the motion of the same particle at former times (Markov process). Now define
τ to be a time interval which is small compared to measuring times, but big enough to ensure
that the motions of the particle in two consecutive time intervals are independent of each other.
Then define n to be the number of suspended particles and � to be the increase (positive or
negative) in a particle’s x-coordinate during τ . It is clear that� will have a different value for
each particle. Now there will be a special probability ϕ(�) of a particle undergoing an increase
in its x-coordinate of �. Then the following three conditions hold for the function ϕ(�):

(1)
∫∞
−∞ ϕ(�) d� = 1;

(2) ϕ(�) = ϕ(−�);
(3) ϕ(�) ≈ 0 (for � big enough).

For the concentration of particles at position x and time t + τ , the definition of ϕ yields

c(x, t + τ) =
∫ ∞

−∞
c(x +�, t)ϕ(�) d�.

Taylor expansion of both sides of this equation yields

c +
∂c

∂t
τ = c

∫ ∞

−∞
ϕ(�) d�︸ ︷︷ ︸

=1 (equation (1))

+
∂c

∂x

∫ ∞

−∞
�ϕ(�) d�︸ ︷︷ ︸

=0 (equation (2))

+
∂2c

∂x2

∫ ∞

−∞

�2

2
ϕ(�) d�. (7)

By setting

τ−1
∫ ∞

−∞

�2

2
ϕ(�) d� ≡ D (8)

one obtains
∂c

∂t
= D ∂

2c

∂x2
(9)

which is nothing else than Fick’s second law.
At the end of these considerations, probably the most famous equation for tracer diffusion

is presented, that for the mean square displacement (MSD), i.e., the mean distance that a
particle travels away from the origin as a function of time. It is given by the second moment
of the concentration distribution c(x, t):

〈x2〉 =
∫

x2c(x, t) d3x = 6Dt. (10)

Therefore measuring the MSD as a function of time provides information about the
diffusion coefficient D.
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2. Scattering measurements

So far we have only considered ‘free’ diffusion (i.e., the atoms could move freely and con-
tinuously through space), a concept that is valid on scales of length and time that are large
compared to atomic scales. Today we know that the atoms that build up matter are very
often arranged in a lattice. This leads to the new concept of ‘jump diffusion’, i.e., the atoms
have to perform jumps from one lattice point to another instead of moving continuously
through space. This new view of the diffusion concept leads to new challenges in science,
e.g., the determination of jump vectors and jump frequencies that could be used to predict
the macroscopic diffusion coefficient D. Tracer diffusion proved to be no perfect tool for
investigating the atomic details of diffusion. Tracer diffusion is very insensitive to the single-
atomic motion because it averages over many jumps. In this section we wish to describe
scattering experiments, which proved to be the ultimate instrument for gaining information
on the microscopic details of the diffusion process, as are tracer experiments on the macro-
scopic scale.

The principles of a scattering experiment are easily explained: an incoming beam of
particles (waves) is fired onto a sample, where the particles (waves) interact with the sample
atoms (‘they are scattered’). The outgoing intensity of particles (waves) is measured as a
function of angle (wavevector transfer Q) and ω (energy transfer) (see figure 2).

Dete
cto

r

ϑ

I0

I(Q, ω)

Sample

Figure 2. The principle of a scattering experiment: the incoming
beam hits the sample and the scattered intensity is measured as
a function of angle and energy.

On the other hand it is a formidable theoretical task to connect the measured scattering
function S(Q, ω) with the atomic details of the sample. In 1954 Léon Van Hove published a
work [30] that has radically influenced modern physics, for it has become the foundation of all
modern scattering experiments. Therein he showed that there is a close connection between the
correlation function of a system and the scattering function of the same system, more exactly

G(r, t) = (2π)−3
∫
S(Q, ω) exp(−i(Q · r − ωt)) d3Q dω (11)

whereG(r, t) stands for the ‘Van Hove correlation function’ andS(Q, ω)denotes the scattering
function, i.e., the probability for a particle to undergo a wavevector transfer of Q and an
energy transfer of h̄ω in the scattering process. The correlation functionG(r, t)measures the
probability of finding any particle at position r at time t when there was a particle at the origin
at time zero. Equation (11) simply states that the scattering function is the spatial and temporal
Fourier transform of the correlation function. The intermediate scattering function I (Q, t) is
defined by a single Fourier transform of G(r, t) in space:

I (Q, t) =
∫

exp(−iQ · r)G(r, t) dr. (12)

One can extract the self-correlation function Gs(r, t), which measures the probability of
finding the same atom at position r at time t when it was at the origin at time zero:

G(r, t) = Gs(r, t) +Gd(r, t). (13)
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Gd(r, t) stands for the ‘distinct’ part of the correlation function, i.e., the probability of finding
another particle at (r, t), when there was some particle at (0, 0). For more details, see, e.g., [12].

It is this self-correlation function that plays a crucial role in the theory of diffusion, because
it describes the wandering of atoms. Equation (5) is nothing but the self-correlation function
for large timescales (remember Einstein’s argumentation, leading to Fick’s second law by
evaluating the probability of a particle increasing its x-coordinate). Thus for large timescales,
when the details of the atomic jump processes are smeared out, Gs(r, t) has to fulfil the
diffusion equation (4).

But we are interested in the microscopic details of the diffusion process, i.e., in the jump
vectors and jump frequencies. The next section explains how the correlation formalism can
be applied to diffusion on an atomic scale and how the desired information can be extracted
from the measured quantities.

3. Jump diffusion on a lattice

It is the aim of this section to generalize the concept of continuous, i.e., macroscopic, diffusion
to the microscopic, i.e., atomic, scale, where the atoms are arranged in a lattice. This is done
in terms of a correlation function so that the Van Hove formalism can be applied easily. The
method goes back to the work of Chudley and Elliott [3] and Singwi and Sjölander [28].

Hence let us consider an ensemble made up of atoms that jump between the sites of a
Bravais lattice. We assume that the residence time τ—the time for which an atom stays on
a special lattice site—is very large compared to the jump time; so the latter is neglected.
Additionally we assume that only nearest-neighbour jumps are possible; the extension is
straightforward.

Therefore we write lk for the jump vector to nearest-neighbour sites. In terms of a rate
equation (see, e.g., [31]) the probability of finding an atom at lattice point r at time t—
together with the boundary condition Gs(r, 0) = δ(r), nothing else than the self-correlation
function3—reads

∂

∂t
Gs(r, t) = 1

nτ

n∑
k=1

[Gs(r + lk, t)−Gs(r, t)] (14)

where each lattice site has n nearest neighbours. 1/τ is called the jump rate.
Equation (14) is solved by transforming into Q-space (see equation (12)):

∂

∂t
I (Q, t) = − 1

nτ

n∑
k=1

[
1 − exp(iQ · lk)

]
I (Q, t) (15)

with

I (Q, t) =
∫ ∞

−∞
Gs(r, t) exp(−iQ · r) dr. (16)

Equation (15) exploits the fact that

Ĝs(r + a) = exp(ik · a)Ĝs(r) (17)

where Ĝ denotes the Fourier transform of G. With the abbreviation

�ω(Q) = 1

nτ

n∑
k=1

[
1 − exp(iQ · lk)

]
(18)

equation (15) is solved by

I (Q, t) = exp(−�ω(Q) t) (19)

3 Appearing directly in QMS and QNS and less directly in nuclear resonant scattering of synchrotron radiation.
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which is nothing else than an exponential decay in time. Another Fourier transform—now in
t instead of r—yields

S(Q, t) = 1

π

�ω(Q)

ω2 + (�ω(Q))2
(20)

a Lorentzian with a FWHM of 2�ω(Q).
Of course this formalism can be applied to the more general case of non-Bravais lattices

(for example, see [21], [15] or [20]; further information can be found in [5, 19]). In these
cases the notation becomes a bit clumsy, because one has to be aware of several sublattices and
therefore of sites with different symmetry, which leads to a lot of indexing on the jump vectors.
The crucial result of such an analysis is that the functions S and I become superpositions of
several Lorentzians and exponentials respectively (one for each sublattice).

Now let us investigate equations (19) and (20) more closely. These two equations describe
exponentials and Lorentzians with Q-dependent decay rates and linewidths respectively (more
exactly: the shapes of the curves depend on the scalar product of Q and the jump vector l and
on the jump frequency τ ; see equation (18)). For example on a Bravais lattice, where for each
jump vector l, −l is also a jump vector (inversion symmetry), equation (18) reduces to

�ω(Q) = 4

nτ

∑
lk>0

sin2

(
Q · lk

2

)
. (21)

Therefore measuring the decay of the intermediate scattering function (19) and the linewidth
of the scattering function (20) in various directions provides information on the elementary
diffusion process.

Before we show examples of real measurements, we want to give an intuitive picture of
how one can understand the diffusional accelerated decay and line broadening: if the timescales
of the scattering process and of the diffusion process (jump frequencies) match, with the result
that during the scattering process the scattering particle undergoes several diffusion jumps, the
emitted (scattered) wave is cut into several wave trains. These wave trains now interfere with
each other, prevalently leading to a loss of intensity, i.e., destructive interference, and therefore
giving rise to the phenomenon of line broadening in energy space and accelerated decay in
time space. Only in very special directions, when the path-length differences of the emitted
wave trains (i.e. the scalar products of Q and l) are integral multiples of the wavelength of the
incident particles, can constructive interference can be maintained, which leads to sharp lines
and slow decays.

4. Measurements

Now that we have developed the theoretical concepts of diffusion, it is time to present exp-
erimental results. There are three experimental methods that proved to be adequate to study
diffusion in the way described:

(1) Quasielastic neutron scattering (QNS).
(2) Quasielastic Mössbauer spectroscopy (QMS).
(3) Nuclear resonant scattering of synchrotron radiation (NRS).
(4) Neutron spin-echo spectroscopy (NSE).

In this work we wish to focus on the relatively new method of NRS (see, e.g., [26]
or [17]); information on QNS and QMS and recent results can be found in, e.g., [8, 9, 27, 32].
Further information on NSE can be found in [18] or [10]. Resonant methods, such as QMS or
NRS, provide the extraordinarily good energy resolution that makes these methods so valuable.
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Conventional Mössbauer spectroscopy (working with a radioactive source and absorber) did not
provide the opportunity to work in the time domain (i.e., measuring the intermediate scattering
function), because it did not provide a time structure4. It was the rise of synchrotrons with their
pulsed radiation and the parallel development of detectors and monochromators that finally
provided the possibility to study the intermediate scattering function directly.

Performing a resonant experiment with a strongly coherent beam is a bit more tricky than
performing the scattering measurements described in section 2. Because of the strong coherent
properties of the incoming beam, all resonant atoms are coherently excited (‘nuclear exciton’)
and therefore emit the radiation coherently in the forward direction. The nuclei act as sources
for the radiation and therefore the coherence may be destroyed if the atom performs a diffusive
jump during the emission process (‘the atom takes the phase with it’). One may regard a
resonant scattering process as a process where the incoming pulse is very short compared to
the scattering process itself, contrary to the case for a classical scattering experiment (e.g.,
QNS), where the opposite is true, the incoming beam being quasicontinuous and the scattering
process being extremely short. For more details, see, e.g., [7, 13, 14, 29]. Figure 3 illustrates
the situation.

a)

b)

c)

Figure 3. In (a) one sees two nuclei that are coherently excited and therefore emit γ -radiation
coherently in the forward direction, i.e., without any path-length difference. In (b) one of these
atoms performs a jump, which leads to a path-length difference of the two wave trains and therefore
to a loss of coherence. One should bear in mind that the atoms in (a) and (b) act as sources and
consequently take their phase with them, whereas in (c) the situation that occurs in, e.g., QNS is
shown: the incoming beam is quasicontinuous and the scattering process so short that a jumping
atom does not destroy the coherence in the forward direction. That is why QNS measurements
cannot be performed in the forward direction.

In our case we used the 14.4 keV level of 57Fe with a natural lifetime of 141 ns and
measured the number of delayed quanta as a function of time. All of the experiments were
carried out at the Nuclear Resonance Beamline of the ESRF (for details on the beamline,
see [22]). The synchrotron was run in 16-bunch mode, providing a radiation pulse with a
duration of about 100 ps every 176 ns. The change of the slope of the decay with increasing
temperature was measured in various directions. For the set-up, see figure 4. In this paper we
present the results for Fe3Si (reference [26]) and FeAl (reference [24]).

4 In 1991 a Russian group succeeded to chop the incident nuclear radiation from a Mössbauer source and so to
produce artificially a time structure of the Mössbauer radiation [36]
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57Fe

Time

delayed 

photons

Synchrotron

pulses of 

X-rays

furnace

Figure 4. The set-up of a NRS experiment. Note that the orientation of the crystal axis with
respect to the synchrotron beam can be chosen freely. Full line: number of delayed photons at low
temperatures. Dotted line: accelerated decay in the presence of diffusion at elevated temperatures.

4.1. Fe3Si

The measurements were done on a Fe3Si single crystal which was cut with its surface parallel
to the (113) direction. Fe3Si crystallizes in the so-called D03 structure, which is shown in
figure 5. This structure consists of three sublattices occupied by iron (α1-, α2-, and γ -sites) and
one sublattice occupied by silicon (β-sites). The iron atoms are assumed to perform jumps on
the iron sublattice only, giving rise to up to three exponentials, which sum up to the scattering
function. But there are also some degenerate directions where only two ([113]) or even just
one ([111]) exponential is observable. The measurements were performed in these directions
to minimize the uncertainties. The results can also be seen in figure 5. The measurements,
which constituted a feasibility test for the new method, confirmed the older results from QMS
that had identified the elementary jump mechanism of iron atoms as being jumps between the
α- and β-sublattices avoiding the silicon sublattice.

4.2. FeAl

The intermetallic stoichiometric alloy FeAl was chosen because of its great interest for diffusion
studies. In contrast to Fe3Si, FeAl crystallizes in the B2 structure (see figure 7, later) and
therefore all nearest neighbours of iron are aluminium atoms. An extensively discussed
problem concerns the question of whether the iron atoms jump directly from one iron site
to another (regardless of the long paths) or whether they briefly occupy the energetically
unfavourable Al antisites (see, e.g., [35]). Earlier experiments with QMS suggested the
latter [6, 23, 33], with a preference for [110] jumps over [100] jumps. Because up to now
first-principles calculations were not able to reproduce such a jump mechanism, it appeared
necessary to check the results from QMS with the new method of NRS.

A stoichiometric single crystal of FeAl was prepared and oriented with its (11̄0) plane
horizontal, i.e., in the plane of the synchrotron beam. Figure 6 shows the measurements
in the (110) direction for four different temperatures. To gain the required information on
jump vectors and jump frequencies it was necessary to measure the curve in many different
directions. Because of the limited beam time it was not possible to follow the intensity decay
over a long time interval, so another method was adopted: time integration of the intensity.
The idea is that a faster decay will lead to a smaller integrated intensity than a slow one without
diffusion. ODIN (orientation dependence of the integrated intensity of NRS) was chosen as
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Figure 5. Top: results for the Fe3Si measurements. The intermediate scattering function was
measured in two directions, [111] and [113]. In the first direction, there is only one exponential
decay, which is hardly accelerated by diffusion. In the [113] direction the scattering function
consists of two exponentials; one of them shows an accelerated decay that becomes stronger with
increasing temperature. Bottom: 2/8 of the elementary cell of Fe3Si. The white circles denote
iron sites, the full circles the silicon sublattice. We also show in which direction the beam hit the
sample. (This figure was taken from [34].)

the name for this method.
Figure 7 shows the results of our measurements. The best fit is achieved by assuming

a combination of [110] and [100] jumps in the ratio (1.9 ± 0.1):1. The measurements show
that the effective jumps of the diffusion stay on the iron sublattice. Even though it cannot
be directly decided whether the diffusing iron atoms take the roundabout way over the Al
antisites with a much shorter residence time on the Al sites or not, all considerations regarding
the underlying mechanism that lead to the measured combination of [110] and [100] jumps
lead to the conclusion that a nearest-neighbour jump to an antistructure site on the Al sublattice
must be the elementary jump (as indicated in figure 7). If the antisite was not used it would not
be possible to explain the favouring of [110] jumps. On the other hand, there are first-principles
calculations that find this jump to an antistructure site too costly in energy [16]; this is why
these authors introduce double jumps or six-jump cycles to explain the experimental results.
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Figure 6. Measurements of FeAl in the (110) direction. The acceleration of the decay with
increasing temperature is clearly visible. (This figure was taken from [24].)

4.3. Outlook

For further experiments with synchrotron radiation, it seems desirable to extend the
investigations to alloys not containing iron. Two methods appear to be very promising:
time domain interferometry (TDI) and speckle spectroscopy. In TDI measurements one uses
stainless steel foils in front of and behind the sample which are in constant relative motion.
The coherent excitation of these two foils produces an artificial beat pattern which is destroyed
by diffusive processes in the sample [1, 11, 25].

Speckle spectroscopy is a technique known from laser spectroscopy that makes use of the
outstanding coherent properties of laser light. Because of the large wavelength of laser light
(≈104 Å) it was mostly used to study systems large on the atomic scale (e.g., particles suspended
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Figure 7. ODIN for FeAl. The fit presented is the best one, achieved by a combination of effective
[110] and [100] jumps with a ratio of (1.9 ± 0.1):1. (This figure was taken from [34].)

in a liquid). With the upgrade of modern synchrotrons it seems possible to extend this method
to synchrotron radiation and therefore to a much shorter wavelength (≈1 Å), so slow atomic
motions should in principle be observable. Speckle spectroscopy is completely non-resonant,
so measurements can be carried out on almost all systems. Speckle measurements have already
been successfully made with synchrotron radiation; e.g., see [2] where critical fluctuations near
the phase transformation were measured.
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[24] Sepiol B, Czihak C, Meyer A, Vogl G, Metge J and Rüffer R 1998 Synchrotron radiation study of diffusion in

FeAl Hyperfine Interact. 113 449
[25] Sepiol B, Kaisermayr M, Thiess H, Vogl G, Alp E E and Sturhahn W 2000 Quasielastic scattering of synchrotron

radiation from non-resonant atoms Hyperfine Interact. 126 329
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